Gene expression profile of human endothelial cells exposed to sustained fluid shear stress.
نویسندگان
چکیده
Biomechanical forces can modulate endothelial phenotype through changes in gene expression. We hypothesized that physiological laminar shear stresses (LSS) act as differentiative stimuli on endothelial cells (EC) to alter gene expression, creating an antioxidant, anti-apoptotic and anti-proliferative environment. The transcriptional profile of cultured human umbilical vein endothelial cells (HUVEC) exposed to LSS was evaluated by GeneCalling; 107 genes demonstrated at least a twofold change in expression at 24 h (LSS vs. static). These flow-responsive genes represent a limited number of functional clusters that include transcription factors, antioxidants, signaling molecules, cell cycle regulators, and genes involved in cellular differentiation. Immunohistochemistry and in situ hybridization confirmed that many of these flow-responsive genes, including the novel basic helix-loop-helix transcription factor Hath6, are expressed in EC in vivo. Thus these data identify a limited set of flow-responsive genes expressed in the endothelium that may be responsible for the establishment and maintenance of the flow-adapted endothelial phenotype in vivo.
منابع مشابه
Investigation of FLK-1 Gene Expression in Differentiated Mesenchymal Stem Cells, Exposed to Chemical, Mechanical and Chemical-mechanical Factors, in order to Study the Differentiation and its Stability
Background: Mesenchymal stem cells (MSCs) are multipotent cells, capable of differentiating into different cell lines.They can sense their surrounding biochemical and biophysical factors, which play major roles in their differentiation toward different phenotypes. Therefore, the exposure of these cells to endothelial growth factor (VEGF) as well as hemodynamic biomechanical forces, which act on...
متن کاملEffect of Purification of Human Adipose-derived Mesenchymal Stem Cells on the Expression of vWF Cell Factor Under Chemical and Mechanical Conditions
Introduction: Human adipose-derived mesenchymal stem cells (hADSCs) are easily accessible in the body, and under appropriate conditions, they can be directed toward various phenotypes. Therefore, hADSCs have been considered as a potential cell source for tissue engineering applications. hADSCs are able to differentiate into endothelial cells which covers the interior surface of vessels, in vi...
متن کاملHuman prostaglandin transporter gene (hPGT) is regulated by fluid mechanical stimuli in cultured endothelial cells and expressed in vascular endothelium in vivo.
BACKGROUND biomechanical forces generated by blood flow within the cardiovascular system have been proposed as important modulators of regional endothelial phenotype and function. This process is thought to involve the regulation of vascular gene expression by physiological fluid mechanical stimuli such as fluid shear stresses. METHODS AND RESULTS We demonstrate sustained upregulation of a re...
متن کاملNuclear factor-kappa B interacts functionally with the platelet-derived growth factor B-chain shear-stress response element in vascular endothelial cells exposed to fluid shear stress.
Hemodynamic forces, such as fluid shear stress, that act on the endothelial lining of the cardiovascular system can modulate the expression of an expanding number of genes crucial for homeostasis and the pathogenesis of vascular disease. A 6-bp core element (5'-GAGACC-3'), defined previously as a shear-stress response element is present in the promoters of many genes, including the PDGF B-chain...
متن کاملOscillatory and steady laminar shear stress differentially affect human endothelial redox state: role of a superoxide-producing NADH oxidase.
Atherosclerotic lesions are found opposite vascular flow dividers at sites of low shear stress and oscillatory flow. Since endothelial proinflammatory genes prominent in lesions are regulated by oxidation-sensitive transcriptional control mechanisms, we examined the redox state of cultured human umbilical vein endothelial cells after either oscillatory or steady laminar fluid shear stress. Endo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physiological genomics
دوره 12 1 شماره
صفحات -
تاریخ انتشار 2002